Clean Commercial Aircraft Reducing the climate impact of flying

Amanda Simpson Airbus Americas Vice President, Research and Technology 23 November 2021 – ACI World General Assembly

Aviation targets

Multiple solutions are necessary to meet emission reduction targets

AIRBUS

Aviation's path towards zero emissions

Sustainable Aviation Fuel

An intermediate carbon-reduction solution for single-aisle & regional aircraft over short to medium terms

Up to 50% SAF blend can be used to fuel single-aisle aircraft today

Up to 85% CO₂ reduction across the entire lifecycle

+300,000 flights operated on SAF

Air Traffic Management

Streamlined Flight Operations - Upgrade Services

Modify aircraft to operate their Airbus fleet in a more sustainable way

(AME)

Descent Profile Optimisation (DPO)

Fello'Fly

Air Management Function

Single European Sky ATM Research (SESAR) and Operations NextGen

4D Trajectory Based Continuous Descent Operations

Required Navigation Performance (RNP) procedures

Streamlined Flight Operations - NAVBLUE helps airlines on their path to sustainability and fuel efficiency

Airbus contributes to ATM research and deployment

Airports and Ground Operations Reduce emissions during taxiing, towing and parking

Airbus solutions to decarbonise airports

APU Of Reduced Engine Taxi & solutions without APU

Engine Off solutions Single Engine Taxiing TaxiBot

Adaptation to Sustainable Aviation Fuel and future alternative fuel like hydrogen

Automation for **Operations**

Optimizing flight paths, air traffic flow, airline scheduling, and aircraft operations to minimize fuel burn and emissions

N-Flight Planning MONITOR SkyBreathet0

NAVBLUE

OPTIMIZE Performance Factor MyEuciCoach™ App Onlymizer

Airspace Design Fuel & Flight Efficiency Consulting & Training

Why hydrogen?

Zero emission: H_2 emits no CO_2^* & has the potential to reduce non- CO_2 emissions (i.e. NOx) & persistent contrails (*if generated from renewables via electrolysis)

Declining costs: the cost of producing H_2 is likely to decline over the next decade, which will make zero-emission flying increasingly economical

$\left(\right)$	R	\sum
("	7\$	-)
	Ľ	

Energy dense: H_2 is 3X lighter than jet fuel but has a lower volumetric density, thereby requiring a different storage solution on aircraft

H₂ technology for aviation

Hydrogen combustion: generating thrust by burning liquid hydrogen

Hydrogen fuel cells: converting energy stored in H_2 into electrical energy to power electric motors

Synthetic fuels: using a net-zero carbon fuel derived from renewable hydrogen & CO₂

Our path to ZEROe

Exploring various technology pathways & aircraft configurations

Targeting all aspects: climate impact, aircraft design, safety, maintenance, industrialization, operations, market, infrastructure, ecosystem, etc.

Collaborating with all stakeholders to drive down costs & grow the ecosystem

Key dates

لا کے لیے محر 2018: Project launch

2020: Pre-program launch

2025: Product selection

2035: Estimated entry-into-service

Challenges to H₂ adoption

Technology compatibility: bringing weight & cost down

H₂ availability & cost: growth of renewable electricity will increase cost-competitiveness

Infrastructure: repurposing existing & on-site production are all options

Regulatory acceptance: changing public perceptions

Airports as Hydrogen Hubs

Addresses high demand coming from different hydrogen-powered utilities

Creates synergies with Green Hydrogen production facilities

Fosters efficiency improvements and cost reductions in hydrogen liquefaction, storage and distribution.

We pioneer sustainable aerospace for a safe and united world

Amous

H₂ energy

AIRBUS ZERCE

